Quantcast Vapor Cycle Theory

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
a vapor. For this reason, liquid Freon 12 or 22 is used in most vapor cycle refrigeration units whether used in aircraft or in home air conditioners and refrigerators. If liquid Freon 12 were poured into an open container surrounded by standard sea level pressure, it would immediately begin to boil at temperatures above -22°F (-30°C). There would be a continuous flow of heat from the warm surrounding air through the walls of the container to the boiling Freon. Moisture from the air would condense and freeze on the exterior of the container. This open container system would work satisfactorily insofar as cooling alone is con- cerned. A drum of Freon could be connected to a coil and the vaporized Freon piped outdoors. A system such as this would provide satisfactory refrigeration, but the cost of continuously replacing the refrigerant would be prohibitive. Because of the cost involved, it is desirable to use the refrigerant over and over. To accomplish this, additional equipment, over and above that already mentioned, is required. Vapor Cycle Theory Refrigerant used in the vapor cycle re- frigeration system occurs as both a liquid and as a vapor. Conversion from a liquid to a vapor will occur at temperatures above – 21°F ( – 34°C) at sea level. If the refrigerant pressure is increased, conversion to a vapor will occur at higher temperatures. Maximum heat transfer efficiency occurs when the refrigerant is at the boiling point (the point at which the liquid will vaporize). The refrigerant must be delivered to the evaporator as a liquid if it is to absorb large quantities of heat. Since it leaves the evaporator in the form of a vapor, some way of condensing the vapor is necessary. To condense the refrigerant vapor, the heat surrendered by the vapor during condensation must be transferred to some other medium. For this purpose, water or air is ordinarily used. The water or air must be at a temperature lower than the condensing temperature of the refrigerant. At any given pressure, the condensing and vaporizing temperature of a fluid are the same. If a refrigerant that vaporizes at 40°F (5°C) is to be condensed at the same temperature, water or air at a lower temperature is needed. Obviously, if water or air at this lower temperature were available, mechanical refrigeration would not be required. As the temperature of available water or air is usually always higher than the temperature of the boiling refrigerant in the evaporator, the refrigerant must be condensed after it leaves the evaporator. To condense the vapor, its pressure must be increased to a point that its condensing temperature will be above the temperature of the water or air available for condensing purposes. For this purpose a compressor is needed. After the pressure of the refrigerant vapor has been increased sufficiently, it may be liquefied in the condenser with comparatively warm water or air. In a practical refrigeration circuit, liquid flows from the receiver to the expansion valve, which is essentially nothing more than a needle valve. The compressor maintains a difference in pressure between the evaporator and the condenser. Without the expansion valve, this difference in pressure could not be maintained. The expansion valve separates the high-pressure part of the system from the low-pressure part. It acts as a pressure reducing valve because the pressure of the liquid flowing through it is lowered. Only a small trickle of refrigerant fluid flows through the valve into the evaporator. The valve is always adjusted so that only the amount of liquid that can be vaporized in the evaporator passes through it. The liquid that flows through the evaporator is entirely vaporized by the heat flowing through the walls of the evaporator. This heat has been removed from the air being cooled. After leaving the evaporator, the vaporized refrigerant flows to the compressor where its pressure is raised to a point where it can be condensed by the condenser airflow available. After being compressed, the vapor flows to the condenser. Here, the walls of the condenser are cooled by the water or air; and as a result, the vapor is liquefied. Heat is transferred from the condensing vapor to the water or air through the walls of the condenser. From the condenser the liquid refrigerant flows back to the receiver, and the cycle is then repeated. Operations and Components The Grumman Aerospace Corporation chose a Freon 12 vapor cycle ACS to provide avionics equipment cooling in the E-2 “Hawkeye” aircraft. This system, the VEA6-1, is described in this section. The basic difference between the basic vapor cycle system and the VEA6-1 system is the method of compensating for the variations in ram air temperature and the variation in the flow of 3-17



Aviation News
Manned and Unmanned Systems: Polish Students and Lockheed Martin Collaborate
[Avionics Today 08-29-14] In a partnership with Lockheed Martin, a...
aviationtoday.com
Rockwell Collins do Brazil Expanding San Jose dos Campos Facilities
Rockwell Collins headquarters Photo: Rockwell Collins [Avionics Today 08-29-14] Rockwell...
aviationtoday.com
Aegean Airlines adds two additional aircraft to its previous A320ceo order
Now seven new aircraft to join the all-Airbus single aisle...
airbus.com
IAE V2500-E5 Engine Receives KC-390 Certification
The fan of an IAE V2500 Engine. Photo: Wikipedia [Avionics...
aviationtoday.com
Through Clutter or Gunfire: Northrop Grumman’s CIRCM Completes Rigorous Testing
A Northrop Grumman CIRCM. Photo: Northrop Grumman [Avionics Today 08-28-2014]...
aviationtoday.com
Indian Defence Ministry Bans Finmeccanica From Bidding
Although still conducting its investigation into whether senior managers from...
aviationtoday.com
United Nations Mi-8 Downed in Sudan 
The Russian operator of a United Nations chartered Mi-8 helicopter...
aviationtoday.com
CAE New Flight Simulator Demonstrates Interoperability, Networking
CAE demonstrates simulation interoperability and networking for RAAF C-130J aircrews....
aviationtoday.com
AMTC Keynote Speakers Announced
The Air Medical Transport Conference (AMTC) is less than a...
aviationtoday.com
RQ-4 Global Hawk UAS Proves Expanded Mission Capabilities
A Northrop Grumman RQ-4 Global Hawk. Photo: Wikipedia [Avionics Today...
aviationtoday.com
Beechcraft Delivers to Mexican Navy
Beechraft delivering the T-6C+ aircraft to the Mexican Navy. Photo:...
aviationtoday.com
Pilatus Partners with TASL for PC-12 Assembly
A Pilatus PC-12 in flight. Photo: Pilatus [Avionics Today 08-25-2014]...
aviationtoday.com
Lockheed Martin’s F-35 on Steady Path to IOC
An F-35B aircraft. Photo: Lockheed Martin [Avionics Today 08-25-2014] The...
aviationtoday.com
GE Looks to Lower H Series Fuel Costs
An H80 powered L-410 aircraft. Photo: GE [Avionics Today 08-22-2014]...
aviationtoday.com
MD 530G Shows Its Muscles at Yuma
The MD 530G scout attack helicopter has just completed its...
aviationtoday.com
XTAR and Leidos Team Up to Test AISR
[Avionics Today 08-21-2014] XTAR, LLC signed an agreement with Leidos,...
aviationtoday.com
Unmanned Air, Ground Vehicles Aid Army Mission
An autonomous resupply, reconnaissance, surveillance and target-acquisition demonstration was been...
aviationtoday.com
Lockheed Martin Readies F-16V for Taiwan Launch
A U.S. Air Force F16 in Flight. Photo: Wikipedia [Avionics...
aviationtoday.com
Pilatus Provides a Better View with New EVS
Pilatus PC-12 EVS Sensor. Photo: Pilatus [Avionics Today 08-19-2014] Pilatus...
aviationtoday.com
Manned and Unmanned Systems: Expanding Integration
 X-47B UAS taking off from a carrier in the Eastern...
aviationtoday.com


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +