Quantcast Vapor Cycle Theory

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
a vapor. For this reason, liquid Freon 12 or 22 is used in most vapor cycle refrigeration units whether used in aircraft or in home air conditioners and refrigerators. If liquid Freon 12 were poured into an open container surrounded by standard sea level pressure, it would immediately begin to boil at temperatures above -22°F (-30°C). There would be a continuous flow of heat from the warm surrounding air through the walls of the container to the boiling Freon. Moisture from the air would condense and freeze on the exterior of the container. This open container system would work satisfactorily insofar as cooling alone is con- cerned. A drum of Freon could be connected to a coil and the vaporized Freon piped outdoors. A system such as this would provide satisfactory refrigeration, but the cost of continuously replacing the refrigerant would be prohibitive. Because of the cost involved, it is desirable to use the refrigerant over and over. To accomplish this, additional equipment, over and above that already mentioned, is required. Vapor Cycle Theory Refrigerant used in the vapor cycle re- frigeration system occurs as both a liquid and as a vapor. Conversion from a liquid to a vapor will occur at temperatures above – 21°F ( – 34°C) at sea level. If the refrigerant pressure is increased, conversion to a vapor will occur at higher temperatures. Maximum heat transfer efficiency occurs when the refrigerant is at the boiling point (the point at which the liquid will vaporize). The refrigerant must be delivered to the evaporator as a liquid if it is to absorb large quantities of heat. Since it leaves the evaporator in the form of a vapor, some way of condensing the vapor is necessary. To condense the refrigerant vapor, the heat surrendered by the vapor during condensation must be transferred to some other medium. For this purpose, water or air is ordinarily used. The water or air must be at a temperature lower than the condensing temperature of the refrigerant. At any given pressure, the condensing and vaporizing temperature of a fluid are the same. If a refrigerant that vaporizes at 40°F (5°C) is to be condensed at the same temperature, water or air at a lower temperature is needed. Obviously, if water or air at this lower temperature were available, mechanical refrigeration would not be required. As the temperature of available water or air is usually always higher than the temperature of the boiling refrigerant in the evaporator, the refrigerant must be condensed after it leaves the evaporator. To condense the vapor, its pressure must be increased to a point that its condensing temperature will be above the temperature of the water or air available for condensing purposes. For this purpose a compressor is needed. After the pressure of the refrigerant vapor has been increased sufficiently, it may be liquefied in the condenser with comparatively warm water or air. In a practical refrigeration circuit, liquid flows from the receiver to the expansion valve, which is essentially nothing more than a needle valve. The compressor maintains a difference in pressure between the evaporator and the condenser. Without the expansion valve, this difference in pressure could not be maintained. The expansion valve separates the high-pressure part of the system from the low-pressure part. It acts as a pressure reducing valve because the pressure of the liquid flowing through it is lowered. Only a small trickle of refrigerant fluid flows through the valve into the evaporator. The valve is always adjusted so that only the amount of liquid that can be vaporized in the evaporator passes through it. The liquid that flows through the evaporator is entirely vaporized by the heat flowing through the walls of the evaporator. This heat has been removed from the air being cooled. After leaving the evaporator, the vaporized refrigerant flows to the compressor where its pressure is raised to a point where it can be condensed by the condenser airflow available. After being compressed, the vapor flows to the condenser. Here, the walls of the condenser are cooled by the water or air; and as a result, the vapor is liquefied. Heat is transferred from the condensing vapor to the water or air through the walls of the condenser. From the condenser the liquid refrigerant flows back to the receiver, and the cycle is then repeated. Operations and Components The Grumman Aerospace Corporation chose a Freon 12 vapor cycle ACS to provide avionics equipment cooling in the E-2 “Hawkeye” aircraft. This system, the VEA6-1, is described in this section. The basic difference between the basic vapor cycle system and the VEA6-1 system is the method of compensating for the variations in ram air temperature and the variation in the flow of 3-17



Aviation News
FAA and Industry Will Study Pilot Fitness
The FAA is working with the commercial aviation and medical...
faa.gov
Didier Evrard, Head of Programmes at Airbus, has been awarded the 2015 Icare prize
This prize distinguishes him for his key role in the...
airbus.com
FAA Streamlines COAs for UAS Test Sites
The Federal Aviation Administration has made it simpler for the...
faa.gov
NextGen's Next Big Thing
May 21- As we move into the summer thunderstorm season,...
faa.gov
FAA Expands "Lessons Learned" Safety Website
May 21- The Federal Aviation Administration (FAA) recently added six...
faa.gov
Volaris takes delivery of first two A321s
First airline in Mexico to operate Airbus’ largest single-aisle aircraft...
airbus.com
Sichuan Airlines receives its 100th Airbus aircraft
China’s largest all Airbus operator celebrates a land-mark delivery Share...
airbus.com
Airbus and Aerospace Valley foster eco-innovation
Partnership with Small & Medium Enterprises Share this Read more...
airbus.com
Airbus helps airlines further improve their environmental performance
Launches the Sustainable Aviation Engagement Programme Share this Read more...
airbus.com
ACSS T3CAS Surveillance System Sees Airbus ADS-B Certification
ACSS T3CAS. Photo: ACSS [Avionics Today 05-15-2015] L-3 and Thales...
aviationtoday.com
Rockwell Collins Scores NASA Contract to Develop Sonic Boom Cockpit Display
NASA’s initial depiction of sonic boom footprint integrated with real-time,...
aviationtoday.com
UH-1Y Recovery Efforts to Resume
@font-face { font-family: "Arial"; }@font-face { font-family: "MS 明朝"; }@font-face...
aviationtoday.com
VivaAerobus receives first of 52 A320s on order
New A320 marks next step towards fleet renewal for Mexico’s...
airbus.com
FAA Kicks Off "No Drone Zone" Effort for D.C. Area
May 13 As hundreds of thousands of tourists flock to...
faa.gov
TAM’s first A350 XWB takes shape
The first A350-900 for TAM Airlines is progressing well in...
airbus.com
Airbus BizLab business accelerator invites first project entries
Six month support to convert innovative ideas into valuable business...
airbus.com
Bird-deterring drones and game consoles inspire the future of flight
Student ideas in final race for €30,000 Airbus biennial Fly...
airbus.com
Boeing Looks to Turn Backlog into Growth
[Avionics Today 05-13-2015] At the 2015 Boeing Investor’s Conference on...
aviationtoday.com
Russian Helicopters Fly on Anniversary of End of WWII's Eastern Front
On Saturday, Russian Helicopters' Mi-26, Mi-28N Night Hunter, Mi-35M, Ka-52...
aviationtoday.com
Airbus Reports Fatal Accident Involving A400M Test Aircraft
Airbus A400M aircraft. Photo: Wikipedia [Avionics Today 05-12-2015] Airbus Defense...
aviationtoday.com


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +