Quantcast Vapor Cycle Theory

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
a vapor. For this reason, liquid Freon 12 or 22 is used in most vapor cycle refrigeration units whether used in aircraft or in home air conditioners and refrigerators. If liquid Freon 12 were poured into an open container surrounded by standard sea level pressure, it would immediately begin to boil at temperatures above -22°F (-30°C). There would be a continuous flow of heat from the warm surrounding air through the walls of the container to the boiling Freon. Moisture from the air would condense and freeze on the exterior of the container. This open container system would work satisfactorily insofar as cooling alone is con- cerned. A drum of Freon could be connected to a coil and the vaporized Freon piped outdoors. A system such as this would provide satisfactory refrigeration, but the cost of continuously replacing the refrigerant would be prohibitive. Because of the cost involved, it is desirable to use the refrigerant over and over. To accomplish this, additional equipment, over and above that already mentioned, is required. Vapor Cycle Theory Refrigerant used in the vapor cycle re- frigeration system occurs as both a liquid and as a vapor. Conversion from a liquid to a vapor will occur at temperatures above – 21°F ( – 34°C) at sea level. If the refrigerant pressure is increased, conversion to a vapor will occur at higher temperatures. Maximum heat transfer efficiency occurs when the refrigerant is at the boiling point (the point at which the liquid will vaporize). The refrigerant must be delivered to the evaporator as a liquid if it is to absorb large quantities of heat. Since it leaves the evaporator in the form of a vapor, some way of condensing the vapor is necessary. To condense the refrigerant vapor, the heat surrendered by the vapor during condensation must be transferred to some other medium. For this purpose, water or air is ordinarily used. The water or air must be at a temperature lower than the condensing temperature of the refrigerant. At any given pressure, the condensing and vaporizing temperature of a fluid are the same. If a refrigerant that vaporizes at 40°F (5°C) is to be condensed at the same temperature, water or air at a lower temperature is needed. Obviously, if water or air at this lower temperature were available, mechanical refrigeration would not be required. As the temperature of available water or air is usually always higher than the temperature of the boiling refrigerant in the evaporator, the refrigerant must be condensed after it leaves the evaporator. To condense the vapor, its pressure must be increased to a point that its condensing temperature will be above the temperature of the water or air available for condensing purposes. For this purpose a compressor is needed. After the pressure of the refrigerant vapor has been increased sufficiently, it may be liquefied in the condenser with comparatively warm water or air. In a practical refrigeration circuit, liquid flows from the receiver to the expansion valve, which is essentially nothing more than a needle valve. The compressor maintains a difference in pressure between the evaporator and the condenser. Without the expansion valve, this difference in pressure could not be maintained. The expansion valve separates the high-pressure part of the system from the low-pressure part. It acts as a pressure reducing valve because the pressure of the liquid flowing through it is lowered. Only a small trickle of refrigerant fluid flows through the valve into the evaporator. The valve is always adjusted so that only the amount of liquid that can be vaporized in the evaporator passes through it. The liquid that flows through the evaporator is entirely vaporized by the heat flowing through the walls of the evaporator. This heat has been removed from the air being cooled. After leaving the evaporator, the vaporized refrigerant flows to the compressor where its pressure is raised to a point where it can be condensed by the condenser airflow available. After being compressed, the vapor flows to the condenser. Here, the walls of the condenser are cooled by the water or air; and as a result, the vapor is liquefied. Heat is transferred from the condensing vapor to the water or air through the walls of the condenser. From the condenser the liquid refrigerant flows back to the receiver, and the cycle is then repeated. Operations and Components The Grumman Aerospace Corporation chose a Freon 12 vapor cycle ACS to provide avionics equipment cooling in the E-2 “Hawkeye” aircraft. This system, the VEA6-1, is described in this section. The basic difference between the basic vapor cycle system and the VEA6-1 system is the method of compensating for the variations in ram air temperature and the variation in the flow of 3-17



Aviation News
ANA Holdings orders seven additional A321s
ANA’s new order further boosts presence of A320 Family in...
airbus.com
Rohde & Schwarz VCS-4G Certified for China
[Avionics Today 01-30-2015] The Civil Aviation Administration of China (CAAC)...
aviationtoday.com
Boeing 747-8 Selected as Next Air Force One
Barack Obama leaving the current Air Force One, a VC-25....
aviationtoday.com
How NextGen is Getting Fans to the Super Bowl
January 29Football fans flying to Phoenix for the Super Bowl...
faa.gov
French Prime Minister visits Airbus Final Assembly Line in Tianjin
Over 200 Airbus A320 Family aircraft assembled so far Share...
airbus.com
Lockheed Martin Reports Strong 2014 for Aeronautics
[Avionics Today 01-29-2015] Lockheed Martin reported a strong year in...
aviationtoday.com
A new attraction in Toulouse for aviation enthusiasts: The Aeroscopia museum opens
Aviation’s past, present and future have come together in southwestern...
airbus.com
Unmanned Aircraft and NFL Football Don't Mix
January 28Many familiar sounds are associated with the Super Bowl:...
faa.gov
Turbomeca's Arriel 2N Turboshaft Receives EASA Certification
Turbomeca has received EASA type-certification for its Ariel 2N turboshaft...
aviationtoday.com
The Long Haul: Aurora’s Orion UAS Claims New Endurance Record with 80-hour flight
The Orion UAS in flight. Photo: Aurora Flight Sciences [Avionics...
aviationtoday.com
RNLAF Selects Terma MASE Pod Solution for NH-90s
The Royal Netherlands Air Force (RNLAF) has contracted Terma, a...
aviationtoday.com
Australian Military’s EC135 T2+ Completes First Flight
The first Airbus EC135 T2+ helicopter in a planned fleet...
aviationtoday.com
Raytheon Absorbs Sensintel, Ups UAS Portfolio
Photo: Raytheon [Avionics Today 01-26-2015] Raytheon has acquired the privately...
aviationtoday.com
Exelis Wins Redesign Contract for US Navy’s ALQ-99 Tactical Jammer
U.S. Navy ALQ-99 aircraft. Photo: U.S. Navy by Mass Communication...
aviationtoday.com
Aircraft Asset Assessment B737-800
Market Presence. In the context of re-engining from both manufacturers,...
aviationtoday.com
FAA to Airlines: E-cigs in Checked Bags are Fire Risk
January 23As the popularity of e-cigarettes increases, the FAA wants...
faa.gov
FAA to Issue New Guidance on Sleep Apnea
January 23The Federal Aviation Administration (FAA) continually works with the...
faa.gov
FAA Grants Two More UAS Exemptions
January 23-The Federal Aviation Administration continues to allow expanded commercial...
faa.gov
F/A-18 Super Hornet Infrared Search and Track System Approved for Production
IRST21, shown on the F/A-18E/F. Photo: Lockheed Martin   [Avionics...
aviationtoday.com
Exelis Inks Contract with General Atomics for MQ-9 UAS Ejector Rack
MQ-9 UAS. Photo: U.S. Air Force [Avionics Today 01-22-2015] Exelis...
aviationtoday.com


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +