Quantcast Vapor Cycle Theory

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
a vapor. For this reason, liquid Freon 12 or 22 is used in most vapor cycle refrigeration units whether used in aircraft or in home air conditioners and refrigerators. If liquid Freon 12 were poured into an open container surrounded by standard sea level pressure, it would immediately begin to boil at temperatures above -22°F (-30°C). There would be a continuous flow of heat from the warm surrounding air through the walls of the container to the boiling Freon. Moisture from the air would condense and freeze on the exterior of the container. This open container system would work satisfactorily insofar as cooling alone is con- cerned. A drum of Freon could be connected to a coil and the vaporized Freon piped outdoors. A system such as this would provide satisfactory refrigeration, but the cost of continuously replacing the refrigerant would be prohibitive. Because of the cost involved, it is desirable to use the refrigerant over and over. To accomplish this, additional equipment, over and above that already mentioned, is required. Vapor Cycle Theory Refrigerant used in the vapor cycle re- frigeration system occurs as both a liquid and as a vapor. Conversion from a liquid to a vapor will occur at temperatures above – 21°F ( – 34°C) at sea level. If the refrigerant pressure is increased, conversion to a vapor will occur at higher temperatures. Maximum heat transfer efficiency occurs when the refrigerant is at the boiling point (the point at which the liquid will vaporize). The refrigerant must be delivered to the evaporator as a liquid if it is to absorb large quantities of heat. Since it leaves the evaporator in the form of a vapor, some way of condensing the vapor is necessary. To condense the refrigerant vapor, the heat surrendered by the vapor during condensation must be transferred to some other medium. For this purpose, water or air is ordinarily used. The water or air must be at a temperature lower than the condensing temperature of the refrigerant. At any given pressure, the condensing and vaporizing temperature of a fluid are the same. If a refrigerant that vaporizes at 40°F (5°C) is to be condensed at the same temperature, water or air at a lower temperature is needed. Obviously, if water or air at this lower temperature were available, mechanical refrigeration would not be required. As the temperature of available water or air is usually always higher than the temperature of the boiling refrigerant in the evaporator, the refrigerant must be condensed after it leaves the evaporator. To condense the vapor, its pressure must be increased to a point that its condensing temperature will be above the temperature of the water or air available for condensing purposes. For this purpose a compressor is needed. After the pressure of the refrigerant vapor has been increased sufficiently, it may be liquefied in the condenser with comparatively warm water or air. In a practical refrigeration circuit, liquid flows from the receiver to the expansion valve, which is essentially nothing more than a needle valve. The compressor maintains a difference in pressure between the evaporator and the condenser. Without the expansion valve, this difference in pressure could not be maintained. The expansion valve separates the high-pressure part of the system from the low-pressure part. It acts as a pressure reducing valve because the pressure of the liquid flowing through it is lowered. Only a small trickle of refrigerant fluid flows through the valve into the evaporator. The valve is always adjusted so that only the amount of liquid that can be vaporized in the evaporator passes through it. The liquid that flows through the evaporator is entirely vaporized by the heat flowing through the walls of the evaporator. This heat has been removed from the air being cooled. After leaving the evaporator, the vaporized refrigerant flows to the compressor where its pressure is raised to a point where it can be condensed by the condenser airflow available. After being compressed, the vapor flows to the condenser. Here, the walls of the condenser are cooled by the water or air; and as a result, the vapor is liquefied. Heat is transferred from the condensing vapor to the water or air through the walls of the condenser. From the condenser the liquid refrigerant flows back to the receiver, and the cycle is then repeated. Operations and Components The Grumman Aerospace Corporation chose a Freon 12 vapor cycle ACS to provide avionics equipment cooling in the E-2 “Hawkeye” aircraft. This system, the VEA6-1, is described in this section. The basic difference between the basic vapor cycle system and the VEA6-1 system is the method of compensating for the variations in ram air temperature and the variation in the flow of 3-17



Aviation News
FAA Statement-Update on Chicago Air Traffic Facility
FAA continues to manage high levels of air traffic in...
faa.gov
Airbus A350-900 receives EASA Type Certification
Major milestone achieved on time, on cost and on quality...
airbus.com
Israel Air Force Emphasizes Ground-Based Training at New Training Center for M-346
The M-346 trainer aircraft in flight. Photo: Wikipedia [Avionics Today...
aviationtoday.com
Made in the USA: Embraer, Sierra Nevada Unveil First A-29 Super Tucano
The first US built A-29 Super Tucano aircraft. Photo: Embraer...
aviationtoday.com
Exelis Reports NextGen ADS-B Program ‘On Budget and On Schedule’
Diagram of ADS-B airspace. Photo: FAA [Avionics Today 09-30-2014] Exelis,...
aviationtoday.com
FAA Statement-Update on Chicago Air Traffic Facility
Flights continue to increase into and out of Chicago-area airports...
faa.gov
FAA Announces 30-day Review
Huerta calls for full review of FAA contingency plans and...
faa.gov
Brazil Looks to Modernize ATM with Indra Radio Navigation DVOR/DME Stations
Indra headquarters in Madrid, Spain. Photo: Indra [Avionics Today 09-29-2014]...
aviationtoday.com
Republic Of Korea to Procure 40 Lockheed Martin F-35A Lightning II’s
Lockheed Martin’s Lightning II aircraft. Photo: Wikipedia [Avionics Today 09-29-2014]...
aviationtoday.com
Air Force Military Training Center Students Complete Training on Ansat-U
The first group of third-year students at the Syzran campus...
aviationtoday.com
Lockheed Martin CEO Highlights Tech Initiatives in Difficult Times
Lockheed Martin Chairman, President and CEO Marillyn Hewson. Photo: Lockheed...
aviationtoday.com
FAA Statement-Update on Chicago Air Traffic Facility
FAA is working around the clock to continue taking travelers...
faa.gov
FAA Statement-10:45 PM Update on Chicago Air Traffic Facility
FAA is working to safely accommodate flights to and from...
faa.gov
FAA Statement-Update on Chicago Air Traffic Facility
FAA Conducting cleanup and damage assessment. Working closely with airlines...
faa.gov
Updated FAA Statement-Event at Chicago Air Traffic Facility
Travelers are encouraged to contact their airlines for further information...
faa.gov
FAA Statement-Event at Chicago Air Traffic Facility
Air travel may be affected-passengers should check with their airlines....
faa.gov
A380 ‎first aircraft in Etihad Airways’ fleet to display new livery
For the first time, Etihad Airways unveiled its all-new livery...
airbus.com
FAA Grants UAS Exemptions for Movie and TV
FAA action marks first step toward allowing the film and...
faa.gov
Already “at home in the sky” – the A320neo continues Airbus’ single-aisle jetliner leadership
Maintaining its reputation for non-stop innovation, Airbus marked a new...
airbus.com
First A320neo successfully completes first flight
· Kicking off a 3,000 hour flight test programme· Paving...
airbus.com


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +