Quantcast FACTORS AFFECTING THE SOUND BEAM

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
sound wave. The frequency (in hertz) of the sound wave is the number of wavelengths that occur every second. FACTORS AFFECTING THE SOUND BEAM The particular sound waves of interest to the sonar operator are the waves that leave the sonar transducer in the form of a beam and go out into the water in search of a submarine. If the sound beam finds a target, it will return in the form of an echo. The use of sonar equipment depends on the presence and the recognition of an echo from a target. Detection of the echo depends on the quality and relative strength (loudness) of the echo compared to the strength and character of other sounds, since they tend to mask or cover it. The sonar operator should know what factors can weaken the sound beam as it travels through water, what factors in the seawater determine the path and speed of the sound beam, and what factors affect the strength and character of the echo. Any signal strength lost during the beam’s travel through the water is known as “transmission loss.” Some of the factors determining transmission loss are discussed in the following paragraphs. Absorption and Scattering Some of the sound energy emitted by the source will be absorbed while passing through the water. The amount absorbed this way depends on the sea state. Absorption is high when winds are great enough to produce whitecaps and cause a concentration of bubbles in the surface layer of the water. In areas of wakes and strong currents, such as riptides, the loss of sound energy is greater. Therefore, echo ranging through wakes and riptides is difficult because of the combined effect of false echoes, high reverberations, and increased absorp- tion. Absorption is greater at higher frequencies than at lower frequencies. Sound waves are weakened when they reach a region of seawater that contains foreign matter, such as seaweed, silt, animal life, or air bubbles. This foreign matter scatters the sound beam and causes loss of sound energy. The practical result of scattering is to reduce echo strength, especially at long range. Reflection Echoes occur when the sound beam hits an object or a boundary region between transmission mediums in such a manner as to reflect the sound or to throw it back to its origin. Reflection of sound waves sometimes happens when a wave strikes a medium of different density from that through which it has been traveling. This will occur in cases where the two mediums are of sufficiently different densities, and the wave strikes at a large angle. This happens because the sound wave travels at different speeds through the two different densities. For example, a sound wave traveling through seawater is almost entirely reflected at the boundary of the water and air. The speed of sound in seawater is about four times greater than the speed of sound in air, and the density of water is more than 800 times greater than that of air. Therefore, practically all of the sound beam will be reflected downward from the sea surface. Similarly, when a sound wave traveling through the seawater strikes a solid object like a submarine, the difference in the density and the sound velocity in the two mediums is such that all but a small amount of the sound beam will be reflected. That portion of the beam that strikes surfaces of the submarine perpendicular to the beam will be reflected directly back to the origin as an echo. In calm seas, most of the sound energy that strikes the water surface from below will be reflected back down into the sea. A scattering effect occurs as the sea gets progressively rougher. In these circumstances, part of any sound striking the surface is lost in the air, and part is reflected in scattering directions in the sea. In water less than 600 feet deep, the sound may also be reflected off the bottom. Other factors being equal, the transmission loss will be least over a smooth, sandy bottom and greatest over soft mud. Over rough and rocky bottoms, the sound is scattered, resulting in strong bottom reverberations. Reverberation When sound waves echo and re-echo in a large hall, the sound reverberates. Reverberations are multiple reflections. Lightning is an example of this from nature. When lightning discharges, it causes a quick, sharp sound; but by the time the sound of the thunder is heard, it is usually drawn out into a prolonged roar by reverberations. 4-2



Aviation News
Airbus ACJ319 offers largest cabin at Jet Expo
Delivers more of what customers want Share this Read more...
airbus.com
Manned and Unmanned Systems: Polish Students and Lockheed Martin Collaborate
[Avionics Today 08-29-14] In a partnership with Lockheed Martin, a...
aviationtoday.com
Rockwell Collins do Brazil Expanding San Jose dos Campos Facilities
Rockwell Collins headquarters Photo: Rockwell Collins [Avionics Today 08-29-14] Rockwell...
aviationtoday.com
Aegean Airlines adds two additional aircraft to its previous A320ceo order
Now seven new aircraft to join the all-Airbus single aisle...
airbus.com
IAE V2500-E5 Engine Receives KC-390 Certification
The fan of an IAE V2500 Engine. Photo: Wikipedia [Avionics...
aviationtoday.com
Through Clutter or Gunfire: Northrop Grumman’s CIRCM Completes Rigorous Testing
A Northrop Grumman CIRCM. Photo: Northrop Grumman [Avionics Today 08-28-2014]...
aviationtoday.com
Indian Defence Ministry Bans Finmeccanica From Bidding
Although still conducting its investigation into whether senior managers from...
aviationtoday.com
United Nations Mi-8 Downed in Sudan 
The Russian operator of a United Nations chartered Mi-8 helicopter...
aviationtoday.com
CAE New Flight Simulator Demonstrates Interoperability, Networking
CAE demonstrates simulation interoperability and networking for RAAF C-130J aircrews....
aviationtoday.com
AMTC Keynote Speakers Announced
The Air Medical Transport Conference (AMTC) is less than a...
aviationtoday.com
RQ-4 Global Hawk UAS Proves Expanded Mission Capabilities
A Northrop Grumman RQ-4 Global Hawk. Photo: Wikipedia [Avionics Today...
aviationtoday.com
Beechcraft Delivers to Mexican Navy
Beechraft delivering the T-6C+ aircraft to the Mexican Navy. Photo:...
aviationtoday.com
Pilatus Partners with TASL for PC-12 Assembly
A Pilatus PC-12 in flight. Photo: Pilatus [Avionics Today 08-25-2014]...
aviationtoday.com
Lockheed Martin’s F-35 on Steady Path to IOC
An F-35B aircraft. Photo: Lockheed Martin [Avionics Today 08-25-2014] The...
aviationtoday.com
GE Looks to Lower H Series Fuel Costs
An H80 powered L-410 aircraft. Photo: GE [Avionics Today 08-22-2014]...
aviationtoday.com
MD 530G Shows Its Muscles at Yuma
The MD 530G scout attack helicopter has just completed its...
aviationtoday.com
XTAR and Leidos Team Up to Test AISR
[Avionics Today 08-21-2014] XTAR, LLC signed an agreement with Leidos,...
aviationtoday.com
Unmanned Air, Ground Vehicles Aid Army Mission
An autonomous resupply, reconnaissance, surveillance and target-acquisition demonstration was been...
aviationtoday.com
Lockheed Martin Readies F-16V for Taiwan Launch
A U.S. Air Force F16 in Flight. Photo: Wikipedia [Avionics...
aviationtoday.com


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +