Quantcast
BACKHAND WELDING

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
Figure 15-32.—Forehand welding. Figure 15-33.—Backhand welding. welding rod back and forth in opposite semicircular paths, you balance the heat to melt the end of the rod and the side walls of the joint into a uniformly distributed molten puddle. As the flame passes the rod, it melts off a short length of the rod and adds it to the puddle. The motion of the torch distributes the molten metal evenly to both edges of the joint and to the molten puddle. This method is used in welding most of the lighter tubing and sheet metals up to 1/8 inch thick because it permits better control of a small puddle and results in a smoother weld. The forehand technique is not the best method for welding heavy metals. BACKHAND WELDING.—In this method the torch tip precedes the rod in the direction of welding, and the flame is pointed back at the molten puddle and the completed weld. The end of the rod is placed between the torch tip and the molten puddle. The welding tip should make an angle of about 45° to 60° with the plates or joint being welded (fig. 15-33). Less motion is required in than in the forehand method. the backhand method If you use a straight Figure 15-34.—Four basic welding positions. welding rod, it should be rotated so that the end will roll from side to side and melt off evenly. You may also bend the rod and, when welding, move the rod and torch back and forth at a rapid rate. If you are making a large weld, you should move the rod so as to make complete circles in the molten puddle. The torch is moved back and forth across the weld while it is advanced slowly and uniformly in the direction of the weld. You’ll find the backhand method best for welding material more than 1/8 inch thick. You can use a narrower “V” at the joint than is possible in forehand welding. An included angle of 60° is a sufficient angle of bevel to get a good joint. It doesn’t take as much welding rod or puddling for the backhand method as it does for the forehand method. By using the backhand technique on heavier material, it is possible to obtain increased welding speeds, better control of the larger puddle, and more complete fusion at the root of the weld. Further, by using a reducing flame with the backhand technique, a smaller amount of base metal is melted while welding a joint. Backhand welding is seldom used on sheet metal because the increased heat generated in this method is likely to cause overheating and burning. When welding steel with a backhand technique and a reducing flame, the absorption of carbon by a thin surface layer of metal reduces the melting point of the steel. This speeds up the welding operation. WELDING POSITIONS.—The four basic welding positions are shown in figure 15-34. Also shown are four 15-25



Aviation News
Rolls-Royce to Support V-22 Engines
Rolls-Royce has received $39 million to support AE 1107C engines...
aviationtoday.com
Regional Scan: Latin America
Avianca Upgrades A320s With ROPS Flight display featuring the Airbus...
aviationtoday.com
Rockwell Collins Reports on Project Missouri Radio Test
[Avionics Today April 23, 2014] Rockwell Collins released a statement about...
aviationtoday.com
Regional Scan: Middle East & Africa
Thales, Qatar to Develop OPV-A Thales, Qatar Air Force officials...
aviationtoday.com
Kestrel Makes sUAS Automation Progress
[Avionics Today April 23, 2014] Lockheed Martin's announced progress with its...
aviationtoday.com
Boeing Stands Out Among Lockheed, Northrop 1st Quarter Results
[Avionics Today April 23, 2014] Three of the world's largest aerospace...
aviationtoday.com
QF16: Unmanned Viper Takes Flight
  A pilotless F-16 during flight. Photo: Boeing The U.S....
aviationtoday.com
The Future of Unmanned Flight
Just five years ago, the idea of the futuristic aircraft...
aviationtoday.com
Sikorsky Flies Optionally Piloted Black Hawk
[Avionics Today April 22, 2014] Sikorsky Aircraft Corp. announced a successful...
aviationtoday.com
Time to Rethink UAS in the US
The Federal Aviation Administration’s (FAA) treatment of very small UAS...
aviationtoday.com
FAA Announces First UAS Test Site Operational
The North Dakota Department of Commerce is ready to start...
faa.gov
Mercury Systems to Provide UAS Processing Modules
[Avionics Today April 21, 2014] Mercury Systems announced a new $3.2...
aviationtoday.com
Airbus Corporate Foundation, JetBlue and Luftfahrt ohne Grenzen send humanitarian aid to Haiti
Ten tonnes of medicine, sheets and blankets shipped on JetBlue...
airbus.com
Northrop Grumman Opens Aircraft Integration Center
[Aviation Today April 16, 2014] Northrop Grumman announced its dedication of...
aviationtoday.com
L-3 TCAS System Selected for KC-46A
[Avionics Today April 18, 2014] Boeing has selected the T3CAS Integrated...
aviationtoday.com
F-35 to Make First U.K. Flight in July
[Avionics Today April 18, 2014] This summer's Royal International Air Tattoo show...
aviationtoday.com
FAA Extends Deadline for Final Helicopter Safety Rule
April 17In response to industry feedback and so that the...
faa.gov
The 2014 AMC/AEEC Conference
[Avionics Today April 17, 2014] 2014 marks the 65th year...
aviationtoday.com
Lockheed Martin F-35 Fleet Tops 15,000 Flight Hours
[Aviation Today, April 16] Lockheed Martin’s F-35 Lightning 2 fleet...
aviationtoday.com
AirAsia to implement Airbus Managed Inventory service
• Automatically replenishing inventory levels at AirAsia facilities • Guaranteeing...
airbus.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +