Quantcast CHARACTERISTICS OF OXYGEN

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
Up to approximately 35,000 feet, an aviator can keep sufficient oxygen in his/her lungs to permit normal activity by use of oxygen equipment that supplies oxygen upon demand (inhalation). The oxygen received by the body on each inhalation is diluted with decreasing amounts of air up to approximately 33,000 feet. Above 33,000 feet and up to approximately 35,000 feet, this equipment provides 100-percent oxygen. At approximately 35,000 feet, inhalation through the DEMAND oxygen system alone will NOT provide enough oxygen. Above 35,000 feet and up to about 43,000 feet, normal activity is only possible by use of PRESSURE DEMAND equipment. This equip- ment consists of a “supercharger” arrangement by which oxygen is supplied to the mask under a pressure slightly higher than that of the surrounding atmosphere. Upon inhalation, oxygen is forced (pressured) into the mask by the system. Upon exhalation the oxygen pressure is shut off automatically so that carbon dioxide can be expelled from the mask. Above 43,000 feet, the only adequate provision for the safety of the aviator is pressurization of the entire body. TYPES OF OXYGEN Aviators breathing oxygen (MIL-0-2721OD) is supplied in two types—type I and type II. Type I is gaseous oxygen and type II is liquid oxygen. Oxygen procured under this specification is required to be 99.5 percent pure. The water vapor content must not be more than 0.02 milligrams per liter when tested at 21.1°C (70°F) and at sea- level pressure. Technical oxygen, both gaseous and liquid, is procured under specification BB-O-925A. The moisture content of technical oxygen is not as rigidly controlled as is breathing oxygen; therefore, the technical grade should never be used in aircraft oxygen systems. The extremely low moisture content required of breathing oxygen is not to avoid physical injury to the body, but to ensure proper operation of the oxygen system. Air containing a high percentage of moisture can be breathed in- definitely without any serious ill effects. The moisture affects the aircraft oxygen system in the small orifices and passages in the regulator. Freezing temperatures can clog the system with ice and prevent oxygen from reaching the user. Therefore, extreme precautions must be taken to safeguard against the hazards of water vapor in oxygen systems. CHARACTERISTICS OF OXYGEN Oxygen, in its natural state, is a colorless, odorless, and tasteless gas. Oxygen is considered to be the most important of all the elements to life. It forms about 21 percent of the atmosphere by volume and 23 percent by weight. The remainder of the atmosphere consists of nitrogen (78 percent) and inert gases (1 percent), of which argon is the most abundant. Of all the elements in our environment, oxygen is the most plentiful. It makes up nearly one-half of the earth’s crust and approximately one-fifth of the air we breathe. Oxygen combines with most of the other elements. The combining of an element with oxygen is called oxidation. Combustion is simply rapid oxidation. In almost all oxidations, heat is given off. In combustion, the heat is given off so rapidly it does not have time to be carried away; the temperature rises extremely high, and a flame appears. Some examples of slow oxidation are rusting of iron, drying of paints, and the change of alcohol into vinegar. Even fuels in storage are slowly oxidized, the heat usually being rapidly carried away. However, when the heat cannot easily escape, the temperature will rise and a fire may break out. This fire is the result of spontaneous combustion. Oxygen does not burn, but it does support combustion. Nitrogen neither burns nor supports combustion. Therefore, combustible materials burn more readily and more vigorously in oxygen than in air, since air is composed of about 78 percent nitrogen by volume and only about 21 percent oxygen. In addition to existing as a gas, oxygen can exist as a liquid and as a solid. Liquid oxygen is pale blue in color. It flows like water, and weighs 9.52 pounds per gallon. EFFECTS OF LACK OF OXYGEN A decrease in the amount of oxygen per unit volume of air results in an insufficient amount of oxygen entering the bloodstream. The body reacts to this condition rapidly. This deficit in oxygen is called HYPOXIA. When the body regains its normal oxygen supply, one may recover from hypoxia. A complete lack of oxygen, which results in permanent physical damage or death, is called ANOXIA. 4-2



Aviation News
Aegean Airlines adds two additional aircraft to its previous A320ceo order
Now seven new aircraft to join the all-Airbus single aisle...
airbus.com
IAE V2500-E5 Engine Receives KC-390 Certification
The fan of an IAE V2500 Engine. Photo: Wikipedia [Avionics...
aviationtoday.com
Through Clutter or Gunfire: Northrop Grumman’s CIRCM Completes Rigorous Testing
A Northrop Grumman CIRCM. Photo: Northrop Grumman [Avionics Today 08-28-2014]...
aviationtoday.com
Indian Defence Ministry Bans Finmeccanica From Bidding
Although still conducting its investigation into whether senior managers from...
aviationtoday.com
United Nations Mi-8 Downed in Sudan 
The Russian operator of a United Nations chartered Mi-8 helicopter...
aviationtoday.com
CAE New Flight Simulator Demonstrates Interoperability, Networking
CAE demonstrates simulation interoperability and networking for RAAF C-130J aircrews....
aviationtoday.com
AMTC Keynote Speakers Announced
The Air Medical Transport Conference (AMTC) is less than a...
aviationtoday.com
RQ-4 Global Hawk UAS Proves Expanded Mission Capabilities
A Northrop Grumman RQ-4 Global Hawk. Photo: Wikipedia [Avionics Today...
aviationtoday.com
Beechcraft Delivers to Mexican Navy
Beechraft delivering the T-6C+ aircraft to the Mexican Navy. Photo:...
aviationtoday.com
Pilatus Partners with TASL for PC-12 Assembly
A Pilatus PC-12 in flight. Photo: Pilatus [Avionics Today 08-25-2014]...
aviationtoday.com
Lockheed Martin’s F-35 on Steady Path to IOC
An F-35B aircraft. Photo: Lockheed Martin [Avionics Today 08-25-2014] The...
aviationtoday.com
GE Looks to Lower H Series Fuel Costs
An H80 powered L-410 aircraft. Photo: GE [Avionics Today 08-22-2014]...
aviationtoday.com
MD 530G Shows Its Muscles at Yuma
The MD 530G scout attack helicopter has just completed its...
aviationtoday.com
XTAR and Leidos Team Up to Test AISR
[Avionics Today 08-21-2014] XTAR, LLC signed an agreement with Leidos,...
aviationtoday.com
Unmanned Air, Ground Vehicles Aid Army Mission
An autonomous resupply, reconnaissance, surveillance and target-acquisition demonstration was been...
aviationtoday.com
Lockheed Martin Readies F-16V for Taiwan Launch
A U.S. Air Force F16 in Flight. Photo: Wikipedia [Avionics...
aviationtoday.com
Pilatus Provides a Better View with New EVS
Pilatus PC-12 EVS Sensor. Photo: Pilatus [Avionics Today 08-19-2014] Pilatus...
aviationtoday.com
Manned and Unmanned Systems: Expanding Integration
 X-47B UAS taking off from a carrier in the Eastern...
aviationtoday.com
FAA Statement- New Notice to Airmen Issued for Syria
U.S. operators are restricted from flying in the Damascus Flight...
faa.gov
Northrop Grumman Wins UH-60L to UH-60V Upgrade
Redstone Defence Systems has selected Northrop Grumman to supply its...
aviationtoday.com


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +