Quantcast
CHARACTERISTICS OF OXYGEN

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  
Up to approximately 35,000 feet, an aviator can keep sufficient oxygen in his/her lungs to permit normal activity by use of oxygen equipment that supplies oxygen upon demand (inhalation). The oxygen received by the body on each inhalation is diluted with decreasing amounts of air up to approximately 33,000 feet. Above 33,000 feet and up to approximately 35,000 feet, this equipment provides 100-percent oxygen. At approximately 35,000 feet, inhalation through the DEMAND oxygen system alone will NOT provide enough oxygen. Above 35,000 feet and up to about 43,000 feet, normal activity is only possible by use of PRESSURE DEMAND equipment. This equip- ment consists of a “supercharger” arrangement by which oxygen is supplied to the mask under a pressure slightly higher than that of the surrounding atmosphere. Upon inhalation, oxygen is forced (pressured) into the mask by the system. Upon exhalation the oxygen pressure is shut off automatically so that carbon dioxide can be expelled from the mask. Above 43,000 feet, the only adequate provision for the safety of the aviator is pressurization of the entire body. TYPES OF OXYGEN Aviators breathing oxygen (MIL-0-2721OD) is supplied in two types—type I and type II. Type I is gaseous oxygen and type II is liquid oxygen. Oxygen procured under this specification is required to be 99.5 percent pure. The water vapor content must not be more than 0.02 milligrams per liter when tested at 21.1°C (70°F) and at sea- level pressure. Technical oxygen, both gaseous and liquid, is procured under specification BB-O-925A. The moisture content of technical oxygen is not as rigidly controlled as is breathing oxygen; therefore, the technical grade should never be used in aircraft oxygen systems. The extremely low moisture content required of breathing oxygen is not to avoid physical injury to the body, but to ensure proper operation of the oxygen system. Air containing a high percentage of moisture can be breathed in- definitely without any serious ill effects. The moisture affects the aircraft oxygen system in the small orifices and passages in the regulator. Freezing temperatures can clog the system with ice and prevent oxygen from reaching the user. Therefore, extreme precautions must be taken to safeguard against the hazards of water vapor in oxygen systems. CHARACTERISTICS OF OXYGEN Oxygen, in its natural state, is a colorless, odorless, and tasteless gas. Oxygen is considered to be the most important of all the elements to life. It forms about 21 percent of the atmosphere by volume and 23 percent by weight. The remainder of the atmosphere consists of nitrogen (78 percent) and inert gases (1 percent), of which argon is the most abundant. Of all the elements in our environment, oxygen is the most plentiful. It makes up nearly one-half of the earth’s crust and approximately one-fifth of the air we breathe. Oxygen combines with most of the other elements. The combining of an element with oxygen is called oxidation. Combustion is simply rapid oxidation. In almost all oxidations, heat is given off. In combustion, the heat is given off so rapidly it does not have time to be carried away; the temperature rises extremely high, and a flame appears. Some examples of slow oxidation are rusting of iron, drying of paints, and the change of alcohol into vinegar. Even fuels in storage are slowly oxidized, the heat usually being rapidly carried away. However, when the heat cannot easily escape, the temperature will rise and a fire may break out. This fire is the result of spontaneous combustion. Oxygen does not burn, but it does support combustion. Nitrogen neither burns nor supports combustion. Therefore, combustible materials burn more readily and more vigorously in oxygen than in air, since air is composed of about 78 percent nitrogen by volume and only about 21 percent oxygen. In addition to existing as a gas, oxygen can exist as a liquid and as a solid. Liquid oxygen is pale blue in color. It flows like water, and weighs 9.52 pounds per gallon. EFFECTS OF LACK OF OXYGEN A decrease in the amount of oxygen per unit volume of air results in an insufficient amount of oxygen entering the bloodstream. The body reacts to this condition rapidly. This deficit in oxygen is called HYPOXIA. When the body regains its normal oxygen supply, one may recover from hypoxia. A complete lack of oxygen, which results in permanent physical damage or death, is called ANOXIA. 4-2



Aviation News
Rolls-Royce to Support V-22 Engines
Rolls-Royce has received $39 million to support AE 1107C engines...
aviationtoday.com
Regional Scan: Latin America
Avianca Upgrades A320s With ROPS Flight display featuring the Airbus...
aviationtoday.com
Rockwell Collins Reports on Project Missouri Radio Test
[Avionics Today April 23, 2014] Rockwell Collins released a statement about...
aviationtoday.com
Regional Scan: Middle East & Africa
Thales, Qatar to Develop OPV-A Thales, Qatar Air Force officials...
aviationtoday.com
Kestrel Makes sUAS Automation Progress
[Avionics Today April 23, 2014] Lockheed Martin's announced progress with its...
aviationtoday.com
Boeing Stands Out Among Lockheed, Northrop 1st Quarter Results
[Avionics Today April 23, 2014] Three of the world's largest aerospace...
aviationtoday.com
QF16: Unmanned Viper Takes Flight
  A pilotless F-16 during flight. Photo: Boeing The U.S....
aviationtoday.com
The Future of Unmanned Flight
Just five years ago, the idea of the futuristic aircraft...
aviationtoday.com
Sikorsky Flies Optionally Piloted Black Hawk
[Avionics Today April 22, 2014] Sikorsky Aircraft Corp. announced a successful...
aviationtoday.com
Time to Rethink UAS in the US
The Federal Aviation Administration’s (FAA) treatment of very small UAS...
aviationtoday.com
FAA Announces First UAS Test Site Operational
The North Dakota Department of Commerce is ready to start...
faa.gov
Mercury Systems to Provide UAS Processing Modules
[Avionics Today April 21, 2014] Mercury Systems announced a new $3.2...
aviationtoday.com
Airbus Corporate Foundation, JetBlue and Luftfahrt ohne Grenzen send humanitarian aid to Haiti
Ten tonnes of medicine, sheets and blankets shipped on JetBlue...
airbus.com
Northrop Grumman Opens Aircraft Integration Center
[Aviation Today April 16, 2014] Northrop Grumman announced its dedication of...
aviationtoday.com
L-3 TCAS System Selected for KC-46A
[Avionics Today April 18, 2014] Boeing has selected the T3CAS Integrated...
aviationtoday.com
F-35 to Make First U.K. Flight in July
[Avionics Today April 18, 2014] This summer's Royal International Air Tattoo show...
aviationtoday.com
FAA Extends Deadline for Final Helicopter Safety Rule
April 17In response to industry feedback and so that the...
faa.gov
The 2014 AMC/AEEC Conference
[Avionics Today April 17, 2014] 2014 marks the 65th year...
aviationtoday.com
Lockheed Martin F-35 Fleet Tops 15,000 Flight Hours
[Aviation Today, April 16] Lockheed Martin’s F-35 Lightning 2 fleet...
aviationtoday.com
AirAsia to implement Airbus Managed Inventory service
• Automatically replenishing inventory levels at AirAsia facilities • Guaranteeing...
airbus.com
 


Privacy Statement - Copyright Information. - Contact Us

comments powered by Disqus

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +